3.5.86 \(\int \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [486]

3.5.86.1 Optimal result
3.5.86.2 Mathematica [A] (verified)
3.5.86.3 Rubi [A] (verified)
3.5.86.4 Maple [A] (verified)
3.5.86.5 Fricas [A] (verification not implemented)
3.5.86.6 Sympy [F]
3.5.86.7 Maxima [F]
3.5.86.8 Giac [F]
3.5.86.9 Mupad [F(-1)]

3.5.86.1 Optimal result

Integrand size = 35, antiderivative size = 100 \[ \int \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \sqrt {a} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a (3 B+C) \tan (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 C \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d} \]

output
2*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+2/3*a*(3*B 
+C)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/3*C*(a+a*sec(d*x+c))^(1/2)*tan(d 
*x+c)/d
 
3.5.86.2 Mathematica [A] (verified)

Time = 1.74 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.01 \[ \int \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sec \left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \sqrt {a (1+\sec (c+d x))} \left (3 \sqrt {2} A \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {3}{2}}(c+d x)+2 (C+(3 B+2 C) \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{3 d} \]

input
Integrate[Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2) 
,x]
 
output
(Sec[(c + d*x)/2]*Sec[c + d*x]*Sqrt[a*(1 + Sec[c + d*x])]*(3*Sqrt[2]*A*Arc 
Sin[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^(3/2) + 2*(C + (3*B + 2*C)*Cos[ 
c + d*x])*Sin[(c + d*x)/2]))/(3*d)
 
3.5.86.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.08, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {3042, 4542, 27, 3042, 4403, 3042, 4261, 216, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4542

\(\displaystyle \frac {2 \int \frac {1}{2} \sqrt {\sec (c+d x) a+a} (3 a A+a (3 B+C) \sec (c+d x))dx}{3 a}+\frac {2 C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sqrt {\sec (c+d x) a+a} (3 a A+a (3 B+C) \sec (c+d x))dx}{3 a}+\frac {2 C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (3 a A+a (3 B+C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{3 a}+\frac {2 C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4403

\(\displaystyle \frac {3 a A \int \sqrt {\sec (c+d x) a+a}dx+a (3 B+C) \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx}{3 a}+\frac {2 C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 a A \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+a (3 B+C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{3 a}+\frac {2 C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {a (3 B+C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-\frac {6 a^2 A \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{3 a}+\frac {2 C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {a (3 B+C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {6 a^{3/2} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{3 a}+\frac {2 C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {\frac {6 a^{3/2} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^2 (3 B+C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{3 a}+\frac {2 C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

input
Int[Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]
 
output
(2*C*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d) + ((6*a^(3/2)*A*ArcTan[( 
Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^2*(3*B + C)*Tan[ 
c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(3*a)
 

3.5.86.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4403
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_ 
.) + (c_)), x_Symbol] :> Simp[c   Int[Sqrt[a + b*Csc[e + f*x]], x], x] + Si 
mp[d   Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b, c, 
 d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 4542
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[(-C)*Cot 
[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(b*(m + 1))   I 
nt[(a + b*Csc[e + f*x])^m*Simp[A*b*(m + 1) + (a*C*m + b*B*(m + 1))*Csc[e + 
f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] 
 &&  !LtQ[m, -2^(-1)]
 
3.5.86.4 Maple [A] (verified)

Time = 1.01 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.54

method result size
parts \(\frac {2 A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )}{d}-\frac {2 B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{d}+\frac {2 C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (2 \sin \left (d x +c \right )+\tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right )}\) \(154\)
default \(\frac {2 \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+3 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+3 B \sin \left (d x +c \right )+2 C \sin \left (d x +c \right )+C \tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right )}\) \(183\)

input
int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETUR 
NVERBOSE)
 
output
2*A/d*(a*(1+sec(d*x+c)))^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh( 
sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-2*B/d*(a*(1+ 
sec(d*x+c)))^(1/2)*(cot(d*x+c)-csc(d*x+c))+2/3*C/d*(a*(1+sec(d*x+c)))^(1/2 
)/(cos(d*x+c)+1)*(2*sin(d*x+c)+tan(d*x+c))
 
3.5.86.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 304, normalized size of antiderivative = 3.04 \[ \int \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {3 \, {\left (A \cos \left (d x + c\right )^{2} + A \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left ({\left (3 \, B + 2 \, C\right )} \cos \left (d x + c\right ) + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, -\frac {2 \, {\left (3 \, {\left (A \cos \left (d x + c\right )^{2} + A \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left ({\left (3 \, B + 2 \, C\right )} \cos \left (d x + c\right ) + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algori 
thm="fricas")
 
output
[1/3*(3*(A*cos(d*x + c)^2 + A*cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x + c) 
^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d 
*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*((3*B + 2*C)*cos(d*x 
 + c) + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d* 
x + c)^2 + d*cos(d*x + c)), -2/3*(3*(A*cos(d*x + c)^2 + A*cos(d*x + c))*sq 
rt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a) 
*sin(d*x + c))) - ((3*B + 2*C)*cos(d*x + c) + C)*sqrt((a*cos(d*x + c) + a) 
/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]
 
3.5.86.6 Sympy [F]

\[ \int \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )\, dx \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2),x)
 
output
Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x) + C*sec(c + d*x)** 
2), x)
 
3.5.86.7 Maxima [F]

\[ \int \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algori 
thm="maxima")
 
output
-1/6*(4*(3*B*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin( 
2*d*x + 2*c) - (3*B*cos(2*d*x + 2*c) + 3*B + 2*C)*sin(3/2*arctan2(sin(2*d* 
x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 
 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 3*((A*cos(2*d*x + 2*c)^2 + A*si 
n(2*d*x + 2*c)^2 + 2*A*cos(2*d*x + 2*c) + A)*arctan2((cos(2*d*x + 2*c)^2 + 
 sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2* 
d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c) 
^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c) + 1)) + 1) - (A*cos(2*d*x + 2*c)^2 + A*sin(2*d*x + 2*c)^2 + 2* 
A*cos(2*d*x + 2*c) + A)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 
 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
 + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2* 
c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1 
) - 2*(A*d*cos(2*d*x + 2*c)^2 + A*d*sin(2*d*x + 2*c)^2 + 2*A*d*cos(2*d*x + 
 2*c) + A*d)*integrate((((cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x 
+ 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x 
+ 2*c) + 2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(5/2 
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2*c)*sin(6*d* 
x + 6*c) + 2*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(6*d*x + 6*c)*sin(2*d* 
x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(5/2*arctan2(sin(2*d...
 
3.5.86.8 Giac [F]

\[ \int \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algori 
thm="giac")
 
output
sage0*x
 
3.5.86.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \]

input
int((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)
 
output
int((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)